Titolo Neuropeptide Ngf Mediates Neuro-immune Response and Inflammation through Mast Cell Activation S.k. Kritas1, A. Saggini2, G. Cerulli3, A. Caraffa4, P. Antinolfi4, A. Pantalone5, S. Frydas6, M. Rosati7, M. Tei3,
نویسندگان
چکیده
Cardiovascular disease is the leading cause of morbidity and mortality in obese individuals. Obesity dramatically increases the risk of development of metabolic and cardiovascular disease. This risk appears to originate from disruption in adipose tissue function leading to a chronic inflammatory state and to dysregulation of the endocrine and paracrine actions of adipocyte-derived factors. These, in turn, impair vascular homeostasis and lead to endothelial dysfunction. An altered endothelial cell phenotype and endothelial dysfunction are common among all obesity-related complications. A crucial aspect of endothelial dysfunction is reduced nitric oxide (NO) bioavailability. A systemic pro-inflammatory state in combination with hyperglycemia, insulin resistance, oxidative stress and activation of the renin angiotensin system are systemic disturbances in obese individuals that contribute independently and synergistically to decreasing NO bioavailability. On the other hand, pro-inflammatory cytokines are locally produced by perivascular fat and act through a paracrine mechanism to independently contribute to endothelial dysfunction and smooth muscle cell dysfunction and to the pathogenesis of vascular disease in obese individuals. The promising discovery that obesity-induced vascular dysfunction is, at least in part, reversible, with weight loss strategies and drugs that promote vascular health, has not been sufficiently proved to prevent the cardiovascular complication of obesity on a large scale. In this review we discuss the pathophysiological mechanisms underlying inflammation and vascular damage in obese patients. OBESITY, INFLAMMATION AND ENDOTHELIAL DYSFUNCTION
منابع مشابه
Neurotensin is a proinflammatory neuropeptide in colonic inflammation.
The neuropeptide neurotensin mediates several intestinal functions, including chloride secretion, motility, and cellular growth. However, whether this peptide participates in intestinal inflammation is not known. Toxin A, an enterotoxin from Clostridium difficile, mediates pseudomembranous colitis in humans. In animal models, toxin A causes an acute inflammatory response characterized by activa...
متن کاملMental Stress in Atopic Dermatitis – Neuronal Plasticity and the Cholinergic System Are Affected in Atopic Dermatitis and in Response to Acute Experimental Mental Stress in a Randomized Controlled Pilot Study
RATIONALE In mouse models for atopic dermatitis (AD) hypothalamus pituitary adrenal axis (HPA) dysfunction and neuropeptide-dependent neurogenic inflammation explain stress-aggravated flares to some extent. Lately, cholinergic signaling has emerged as a link between innate and adaptive immunity as well as stress responses in chronic inflammatory diseases. Here we aim to determine in humans the ...
متن کاملP164: The Role of Mast Cells in the Pathogenesis of Anxiety Disorders
Mast cells are a heterogeneous population of granulocytic cells in the immune system. Mast cell granules contain numerous mediators, including neurotransmitters, cytokines, chemokines and lipid-derived factors. In addition to their well-known role in immune inflammation, the presence of mast cells in the meninges and perivascular space in the central nervous system points to their role in brain...
متن کاملNerve growth factor and eosinophils in inflamed juvenile conjunctival nevus.
PURPOSE To study both systemic and ocular nerve growth factor (NGF) in inflamed juvenile conjunctival nevus (IJCN), a benign, inflammatory juxtalimbal lesion characterized by many intralesional eosinophils, and to investigate the behavior of eosinophils cocultured on lesional and extralesional fibroblasts obtained from IJCN biopsies, in relation to NGF. METHODS Eight patients with IJCN (7-15 ...
متن کاملPeripheral inflammatory pain sensitisation is independent of mast cell activation in male mice
The immune and sensory systems are known for their close proximity and interaction. Indeed, in a variety of pain states, a myriad of different immune cells are activated and recruited, playing a key role in neuronal sensitisation. During inflammatory pain it is thought that mast cells (MC) are one of the immune cell types involved in this process, but so far the evidence outlining their direct ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014